Second Semester B.C.A. Degree Examination, May/June 2019

(CBCS - Freshers & Repeaters - 2014-15 onwards)

Computer Applications

Paper 205 — NUMERICAL AND STATISTICAL METHODS

Time : 3 Hours]

[Max. Marks: 100

Instructions to Candidates : Answers all Sections.

3

SECTION - A

I. Answer any **TEN** of the following:

 $(10 \times 2 = 20)$

- 1. Define relative error and absolute error.
- 32. Write the formula for Newton-Raphson method.
- 3. Write the 'Lagrange's interpolation formula'.
- 34. Write the formula for secant method.
- 5. Construct the difference table for the following data:

X: 0 1 2 3 4 5 6 7

f(X): 1 2 4 7 11 16 22 29

3

- Write the Simpson's $\left(\frac{1}{3}\right)^{rd}$ rule formula.
- 3 7. Explain Gauss-Jacobi method for solving system of linear equations.

Find the Harmonic Mean (HM) of the following series :

5, 10, 15, 20, 25

a

Define correlation.

3

10. Write the formula for Spearman's rank correlation coefficient.

پ م 11.

11. Find the coefficient of variation given that mean is 1.2 and S.D. is 1.378.

) 12. Define Conditional probability.

Q.P. Code: 15223

SECTION - B

45.72.70.4

II. Answer any SIX of the following:

 $(6 \times 5 = 30)$

C

(

(

C

- 13. Find the root of the equation $x^3 4x 9 = 0$ lies between 2 and 3 by using Bisection method in 4 stages.
- 14. Find f(1.4) from the following table:

x: 1 2 3 4 5 f(x): 10 26 58 112 194

15. Estimate f(6) using Lagrange's interpolation formula from the following data:

X: 3 7 9 10 f(X): 168 120 72 63

- 16. Evaluate: $\int_{0}^{1} \frac{dx}{1+x}$ using Simpson's $\left(\frac{3}{8}\right)$ th rule.
- 17. Find the value of $\int_{1}^{5} \log_{10}^{x} dx$ taking 8 sub intervals correct to four decimal places by Trapezoidal rule.
- 18. Solve by Gauss Elimination method.

$$x + y + z = 9$$

 $2x - 3y + 4z = 13$
 $3x + 4y + 5z = 40$

19. Solve using Crout's LV decomposition method.

$$x_1 + x_2 + x_3 = 1$$
$$4x_1 + 3x_2 - x_3 = 6$$
$$3x_1 + 5x_2 + 3x_3 = 4$$

20. Solve the system of linear equation by Cholesky method.

$$X_1 + 2X_2 + 3X_3 = 5$$

$$2X_1 + 8X_2 + 22X_3 = 6$$

$$3X_1 + 22X_2 + 82X_3 = -10$$

SECTION - C

Answer any SIX of the following: III.

 $(6 \times 5 = 30)$

21. Solve the Gauss-Jacobi method

$$10X + 2Y + Z = 9$$
, $X + 10Y - Z = -22$, $2X - 3Y - 10Z = -22$.

22. Solve by Gauss-Seidel iterative method

$$x + y + 54z = 110$$
, $27x + 6y - z = 85$, $6x + 15y + 2z = 72$.

- Find the largest eigen value and the corresponding eigen vector of the matrix by 23. using power method $A = \begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$.
- Solve $\frac{dy}{dx} = x + y^2$, y(0) = 1 by using Picard's method upto the second approximation hence find the value of y(0,1).
- Using Taylor's series method to find y at X = 1.1 and 1.2 considering terms upto 25. third degree given that $\frac{dY}{dX} = X + Y$, y(1) = 0.
- Using Runge-Kutta method of IV order, solve $\frac{dy}{dx} = xy$ with y(1) = 2, find the 26. approximate solution at $x_1 = 1.2$.
- Find the Geometric mean from the following data:
- 32-36 36-40 28 – 3220-24 24–28 16-20 12 - 168–12 2 6 10 12 15 18 30 10 f: 6
- If A and B are events with $P(A) = \frac{5}{8}$, $P(B) = \frac{3}{8}$ and $P(A \cup B) = \frac{3}{4}$ find P(A/B)and P(B/A).

SECTION - D

Answer any **FOUR** of the following: IV.

 $(4\times 5=20)$

Find mean and standard deviation from the following data:

80 70 75 55 60 65 50 45 X:7 8 7 9 7 4 3 5 f:

Q.P. Code: 15223

30. Find the coefficient of correlation for the following data:

31. Compute the rank correlation coefficient for the following data:

- 32. Two cards are drawn from well-shuffled pack of 52 cards. Find the probability that they are both aces if the first card is (a) replaced (b) not replaced.
- 33. Show that the following distribution represents a discrete probability distribution. Find mean and variance.

$$X:$$
 10 20 30 40 $f(X):$ $\frac{1}{8}$ $\frac{3}{8}$ $\frac{3}{8}$ $\frac{1}{8}$

- 34. Find the probability that in a family of 4 children there will be
 - (a) Atleast one boy
 - (b) Atleast one boy and atleast one girl

Assume that the probability of male birth is $\frac{1}{2}$.